siemens
pish:2.30 GBSCSI:2023/04/16
Loan:femaleCard:ios
Trò chơi-Cho phép trải nghiệm nhập vai đỉnh cao,áncánhdiề hạnh phúc không chỉ là những con số
Trong những năm gần đây, ngành công nghiệp trò chơi bùng nổ và nhiều loại trò chơi lần lượt xuất hiện. Là một trong những viên ngọc sáng, trò chơi đang dần được người chơi ưa chuộng. Nó đã thu hút một lượng lớn người chơi với lối chơi độc đáo, đồ họa tinh tế và nội dung trò chơi phong phú. Hôm nay, hãy cùng nhau thưởng thức và trải nghiệm niềm vui bất tận mà trò chơi này mang lại nhé!
Bài 1 trang 77 SGK Toán 11 tập 1 – Cánh DiềuDùng định nghĩa xét tính liên tục của hàm số (fleft( xight) = 2{x^3} + x + 1) tại điểm (x = 2.)Phương pháp:Hàm số (y = fleft( xight)) được gọi là liên tục toán 10 cánh diều trang 77 tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Lời giải:Hàm số (fleft( xight) = 2{x^3} + x + 1) xác định trên (mathbb{R}).Ta có: (begin{array}{l}mathop {lim}limits_{x o 2} fleft( xight) = mathop {lim}limits_{x o 2} left( {2{x^3} + x + 1}ight) = {2.2^3} + 2 + 1 = 17\fleft( 2ight) = {2.2^3} + 2 + 1 = 17\ Rightarrow mathop {lim}limits_{x o 2} fleft( xight) = fleft( 2ight)end{array})Do đó hàm số liên tục tại x = 2.Bài 2 trang 77 SGK Toán 11 tập 1 – Cánh DiềuTrong các hàm số có đồ thị ở Hình 15a, 15b, 15c, hàm số nào liên tục trên tập xác định của hàm số đó? Giải thích.Phương pháp:– Các hàm đa thức liên tục trên (mathbb{R})– Các hàm phân thức hữu tỉ liên tục trên từng khoảng xác định của chúng– Hàm số (y = fleft( xight)) được gọi là liên tục tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( toán 10 cánh diều trang 77 xight) = fleft( {{x_0}}ight))Lời giải:Bài 3 trang 77 SGK Toán 11 tập 1 – Cánh DiềuBạn Nam cho rằng: “Nếu hàm số (y = fleft( xight)) liên tục tại điểm ({x_0},) còn hàm số (y = gleft( xight)) không liên tục tại ({x_0},) thì hàm số (y = fleft( xight) + gleft( xight)) không liên tục tại ({x_0})”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.Phương pháp:Hàm số (y = fleft( xight)) được gọi là liên tục tại ({x_0}) nếu (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Lời giải:Theo em ý kiến của bạn Nam là đúng.Ta có: Hàm số (y = fleft( xight)) liên tục tại điểm ({x_0}) nên (mathop {lim}limits_{x o {x_0}} fleft( xight) = fleft( {{x_0}}ight))Hàm số (y = gleft( xight)) không liên tục tại ({x_0}) nên (mathop {lim}limits_{x o {x_0}} gleft( xight)e gleft( {{x_0}}ight))Do đó (mathop {lim}limits_{x o {x_0}} left[ {fleft( xight) + gleft( xight)}ight] = mathop {lim}limits_{x o {x_0}} fleft( xight) + mathop {lim}limits_{x o {x_0}} gleft( xight)e fleft( {{x_0}}ight) + gleft( {{x_0}}ight))……
Phương pháp giải Hướng dẫn giải a) Áp dụng định lí cosin trong tam giác ABC ta có:(A{B^2} = A{C^2} + B{C^2} – 2.AC.BC.cos C)(begin{array}{l} Leftrightarrow A{B^2} = {15^2} + {12^2} – 2.15.12.cos {120^o}\ Leftrightarrow A{B^2} = 549\ Leftrightarrow AB approx 23,43end{array})b) Áp dụng định lí sin trong tam giác ABC, ta có:(frac{{BC}}{{sin A}} = frac{{AB}}{{sin C}})( Rightarrow sin A = frac{{BC}}{{AB}}.sin C = frac{{12}}{{23,43}}.sin {120^o} approx 0,44)( Rightarrow widehat A approx {26^o}) hoặc (widehat A approx {154^o}) (Loại)Khi đó: (widehat B = {180^o} – ({26^o} + {120^o}) = {34^o})c)Diện tích tam giác ABC là: (S = frac{1}{2}CA.CB.sin C = frac{1}{2}.15.12.sin {120^o} = 45sqrt 3 ) Phương pháp giải Hướng dẫn giải Áp dụng định lí sin trong tam giác ABC ta có:(frac{{AB}}{{sin C}} = frac{{BC}}{{sin A}})( Rightarrow sin C = sin A.frac{{AB}}{{BC}} = sin {120^o}.frac{5}{7} = frac{{5sqrt 3}}{{14}})( Rightarrow widehat C approx 38,{2^o}) hoặc (widehat C approx 141,{8^o}) (Loại)Ta có: (widehat A = {120^o},widehat C = 38,{2^o})( Rightarrow widehat B = {180^o} – left( {{{120}^o} + 38,{2^o}}ight) = 21,{8^o})Áp dụng định lí cosin trong tam giác ABC ta có:(begin{array}{l}A{C^2} = A{B^2} + B{C^2} – 2.AB.BC.cos B\ Leftrightarrow A{C^2} = {5^2} + {7^2} – 2.5.7.cos 21,{8^o}\ Rightarrow A{C^2} approx 9\ Rightarrow AC = 3end{array})Vậy độ dài cạnh AC là 3. Phương pháp giải Hướng dẫn giải toán 10 cánh diều trang 77a)Ta có: (widehat A = {180^o} – (widehat B + widehat C)) ( Rightarrow widehat A = {180^o} – ({100^o} + {45^o}) = {35^o})Áp dụng định lí sin trong tam giác ABC ta có:(frac{{AB}}{{sin C}} = frac{{AC}}{{sin B}} = frac{{BC}}{{sin A}})( Rightarrow left{ begin{array}{l}AC = sin B.frac{{AB}}{{sin C}}\BC = sin A.frac{{AB}}{{sin C}}end{array}ight.)( Leftrightarrow left{ begin{array}{l}AC = sin {100^o}.frac{{100}}{{sin {{45}^o}}} approx 139,3\BC = sin {35^o}.frac{{100}}{{sin {{45}^o}}} approx 81,1end{array}ight.)b)Diện tích tam giác ABC là: (S = frac{1}{2}.BC.AC.sin C = frac{1}{2}.81,1.139,3.sin {45^o} approx 3994,2.) Phương pháp giải Hướng dẫn giải a) Áp dụng định lí cosin trong tam giác ABC, ta có: (cos A ……
Bài 57 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC. Giá trị của biểu thức (overrightarrow {BA} .overrightarrow {CA} ) bằng:A. AB. AC. cos(widehat {BAC}) B. – AB. AC. cos(widehat {BAC}) C. AB. AC. cos(widehat {ABC}) D. AB. AC. cos(widehat {ACB})Lời giải:Ta có: (overrightarrow {BA} .overrightarrow {CA} = left( { – overrightarrow {AB} }ight).left( { – overrightarrow {AC} }ight) = overrightarrow {AB} .overrightarrow {AC} = AB.AC.cos widehat {BAC})Chọn ABài 58 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC. Giá trị của biểu thức (overrightarrow {AB} .overrightarrow {BC} ) bằng:A. AB. BC. cos(widehat {ABC}) B. AB. AC. cos(widehat {ABC}) C. – AB. BC. cos(widehat {ABC})D. AB. BC. cos(widehat {BAC})Phương toán 10 cánh diều trang 77 pháp:Biến đổi (overrightarrow {AB} ) và (overrightarrow {BC} ) thành 2 vectơ chung gốc rồi sử dụng định nghĩa tích vô hướng của hai vectơLời giải:Đáp án đúng là ABài 59 trang 105 SBT Toán 10 – Cánh DiềuCho đoạn thẳng AB. Tập hợp các điểm M nằm trong mặt phẳng thoả mãn (overrightarrow {MA} .overrightarrow {MB} = 0)là:A. Đường tròn tâm A bán kính AB B. Đường tròn tâm B bán kính AB C. Đường trung trực của đoạn thẳng AB D. Đường tròn đường kính ABPhương pháp:Sử dụng tính chất (overrightarrow a .overrightarrow b = 0 Leftrightarrow left( {overrightarrow a ,overrightarrow b}ight) = {90^0}) để tìm vị trí điểm MLời giải:Đáp án đúng là DBài 60 trang 105 SBT Toán 10 – Cánh DiềuNếu hai điểm M, N thoả mãn (overrightarrow {MN} .overrightarrow {NM} = – 9) thì:A. MN = 9 B. MN = 3 C. MN = 81 D. MN = 6Lời giải:Theo giả thiết, (overrightarrow {MN} .overrightarrow {NM} = – 9 Leftrightarrow overrightarrow {MN} .overrightarrow {MN} = 9 Leftrightarrow {left( {overrightarrow {MN} }ight)^2} = 9 Leftrightarrow M{N^2} = 9 Leftrightarrow MN = 3) Chọn BBài 61 trang 105 SBT Toán 10 – Cánh DiềuCho tam giác ABC đều cạnh a. Các điểm M, N lần lượt thuộc các tia BC và CA thoả mãn (BM = frac{1}{3}BC,CN = frac{5}{4}CA). Tính:a) (overrightarrow {AB} .overrightarrow {AC}……
rikvip inkJazz563.00 MBv4.1.4 iphoneivory
moresexvip 88Jazz563.00 MBv4.1.4 iphoneivory
moretaixiuonlineJazz563.00 MBv4.1.4 iphoneivory
morequa bongJazz563.00 MBv4.1.4 iphoneivory
moreplaytime casino gcashJazz563.00 MBv4.1.4 iphoneivory
moreonline casino deutschlandJazz563.00 MBv4.1.4 iphoneivory
moreslots machine casinoJazz563.00 MBv4.1.4 iphoneivory
moretem winnerJazz563.00 MBv4.1.4 iphoneivory
moreonline bettingJazz563.00 MBv4.1.4 iphoneivory
moresolaire online casino.comJazz563.00 MBv4.1.4 iphoneivory
moretài xỉu online 88Jazz563.00 MBv4.1.4 iphoneivory
moretelegram toi co 888Jazz563.00 MBv4.1.4 iphoneivory
moregee
overnight swimming pool in cebu cityJazz563.00 MBv4.1.4 iphoneivory
moreshbet80 casinoJazz563.00 MBv4.1.4 iphoneivory
moresabong live todayJazz563.00 MBv4.1.4 iphoneivory
moreplusJazz563.00 MBv4.1.4 iphoneivory
morexử nữ hôm nayJazz563.00 MBv4.1.4 iphoneivory
moresodo66 sòng bạcJazz563.00 MBv4.1.4 iphoneivory
moresv388 bet casinoJazz563.00 MBv4.1.4 iphoneivory
moresố liệu thống kê về al-nassr gặp al ettifaqJazz563.00 MBv4.1.4 iphoneivory
moresodo15 casinoJazz563.00 MBv4.1.4 iphoneivory
moresex vn 88Jazz563.00 MBv4.1.4 iphoneivory
moreshbet 88Jazz563.00 MBv4.1.4 iphoneivory
moreslot gameJazz563.00 MBv4.1.4 iphoneivory
moreapud